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A rigid body, which we shall call the frame, can perform all possible 
rotations about the fixed point 0 inside the frame (Fig. 11. The frame 
contains two gyroscopes whose inner rings Ehousingsl could rotate about 

parallel axes fixed in the frame, through the same rotation angle 6. 
Further, the inner rings of the two gyroscopes act on each other through 
some mechanism, such as a spring. The center of gravity of the whole 
system does not coincide with the point 0. This system thus resembles 
the gyrosphere of a space compass. 

Fig. 1. 

Ishlinskii [ 1.2 1 investigated a similar system with a moving base, 
and using the elementary gyroscope theory, has shown many of its inter- 
esting properties. It serves a useful purpose to examine rigorously some 
of these properties. In addition, Rumiantsev has successfully carried 
out rigorous investigations of the dynamics of a rigid body with one 
point fixed. In particular, he skillfuXly utilized the Ruth-Liapunov 
theorem on the stability of stationary motion when he investigated the 
stability of permanent rotations of a heavy rigid body [ 3 3. 
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This paper considers the problem of the existence of stationary 
motions and their stability. The mass of the frame is taken into account. 
The gyroscopes are not the nfast-spinningN ones as it is customary to 
assume in elementary theory. In general. the spin velocities of the two 

ggroscopes are different. The only external force is the force of gravity. 
It is assumed that the system is conservative and that the frame of re- 

ference is inertial. 

1. Let 067 (’ be an inertial co- t WW0J ‘4) 

ordinate system (Fig. 2), the coordi- 2 Y 

nate system Oxyz be fixed in the I9 P 

frame. its axes being the principal 
axes of inertia of the frame through 

% 

0 ____ _ 

the point 0 (Figs. 1. 2). the x-axis 
parallel to the rotation axes of the y N 

inner rings, the zl- and s2-axes be z 
the spin axes of the gyroscopes Fig. 2. 
located in the Oyz plane. Then the 
position of the whole system with respect to the axes 057 6 can be de- 
termined through the angles 4, $, 8, al and a2. Here al and a2 are the 
rotation angles of the gyroscopes with respect to their inner rings. 

The mass of each gyroscope is a, its equatorial (for the axes through 

O1 and 02) and axial moments of inertia are A1 and C,, respectively; the 
moments of inertia of the frame about thi axes x, y and L are At, B2 and 

C2, respectively. 

Let also p, q and r be the L, y and I components of the angular velo- 

city: 

p=$sin9sincp+Qcoscp, 

The z1 and x2 components 
gyroscope are 

m = hl - q sin 8 f 

q = 4 sin 0 cos cp - 6 sin cp, r=$cose++ 

of the absolute angular velocity of each 

r cos 6, rz=Lv+qsin8frcos6 

The kinetic energy of the system is 

2T = Apa + Bq’ + Cra + 2&j” + cl (1’1’ + rz*) 

where 

A = Aa + 2mb + 2A1, B = B% + 2mP + 2A1 co9 6, C = Ca + 2A1 sina 6 

The expression for the force function has the form 

.U = -P &yi + YOYS f ~0~s) + 2 \ M (6) do 

(1.1) 

(1.2) 
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Here P is the weight of the system, M(a) is the moment of the spring 
system, x0, y0 and z. are the coordinates of the center of gravity with 
respect to Oxyz. The direction cosines yl, yz and yf, of the upward- 
directed vertical axis 5, with respect to the x-, y- and z-axes are 

yl = sinflsinq, yz = sinfIcoscp, y3 = cod3 

From (1.1) and (1.2) it follows that the coordinates $, a1 and a2, 
are cyclic. The first integrals of the equations of motion with respect 
to these coordinates are 

Clrl = HI = const, Clrz = Hz = const (H=H+Hz, h=Hz--1) (1.3) 
Apyl + Bqy, + Cry3 + hyz sin 8 + Hys cos 8 = n = const 

We shall eliminate the cyclic coordinates $, al and a2. After certain 
transformations the Routh function assumes the form 

&3&p + -~-r$+2 +~/~I~~]+[Hcos~+ 

-l r , 

+ $ (n - hyz sin 8 - Hys cos 8) y3j I+ + L--h sin cp sin 8 + T (n - hyz sin 8 - 

- Hy3 cos 8) 6 - 2k (n - hy, sin 8 - Hy3 cos 8)a (1.4) 

Here 

II= Ay12 + Byzz + C732, I2 = Ayl cos cp - By2 sincp, 13=Acos2cp _P Bsin2 

For the coordinates q1 = 8, q2 = 4. q3 = 6, we have the equations 

(1.5) 

We shall consider the stationary motion of the system 

which corresponds to the uniform rotation of the frame about a vertical 
axis. The constants (1.6) should satisfy the condition d/de (R - U) = 0. 

Replacing the symbols yl, yz and y3, by a, p and y. respectively, and 
taking into account on the strength of (1.3) that 

o = -& (n - hfi sin 8,, - Hy cos 8,) 

we obtain the following conditions: 

(H sin 8, cos 8, - hy cos p, sin 8,) co - (Au sin ‘pO + B,$ cos ‘p. - Co sin 80) yo2 = 
= - P (zOy sin rpo + yoy cos ‘p. - z. sin eo) 

hocz sin 8. - (A - Bo) 02afi = -P (zofi - you) (1.7) 
(Hy sin 8. - hfi cos 80)o - A1 (y2 - b2) co2 sin 280 = 2M (8,) 
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Here I,,, Boa Co denote the values of these quantities for the motion 
under consideration. The last equation in (1.7) determines the moment of 
the spring system, When 8,, de, 6, and o are assigned, then the quanti- 
ties H and h can be determined from the first two equations. Rotations 
about the principal axes of inertia of the frame are investigated in [ 61. 

Consequently, by utilizing gyroscopes we can make the frame rotate 
about an arbitrary vertical axis by selecting appropriate spin velocities 
for the gyroscopes. (If Q: = 0, then at p f 0 it follows that r,, = 0). 

We shall separate now the rotations of the frame about axes lying in 
the principal planes of the frame, by setting ye = ze = 0. When the axes 
are in the Oxy plane (y = 0) the conditions (1. ‘7) give H = 0, which is 
equivalent to q = - wz. 

hoc2 sin 13~ - (A - B,) 02c$ = - Pz$, 
- he@ cos a0 + A@02 sin 2& = 2M (6,), h = 2C1 (0% + oj3 sin 6,) (1.8) 

When the axes are in the 0x2 plane (6 = 0). the conditions are 
analogous to (1.8) where the quantities h, a,,, B, and /3 are replaced by 
H, 1/2n+ 6,. Co and y, respectively. 

Rotations about the axes which are in the Oyz plane (a = 0) are im- 
possible when x0 = 0. 

2. We shall investigate the stability of rotation about the axes which 
are lying in the Oxy plane, that is, we shall set in the perturbed motion 
8 = l/2 n + XI’ $b = +e + xx, 6 = 6, + x3. 

The variational equations of the system (1.5) will have the following 
form: 

ABo . . 
x XI - m& + k?s + alxl = 0, 

Co& + mh + ~22 + bxs = 0 
2Al23 - k51 + bx2 + asxs = 0 (2.1) 

We have the following expressions for the coefficients of the gyro- 
scopic forces: 

m = -&- [B,@ sin 6,+ (A - Bo) (Aa - Bop2) 0 - LOCOW] 

k = $WlwfJ sin 2oo - h cos 6,) (2.2) 

In the coefficients of the potential forces we can eliminate Px, by 
the use of (1.8) and then put them in the form 

al = i ho sin o. + (Bo - Co) w2, (2.3) 

+ [+(A--) ] B o o2 ho sin 6, +[3 (A - I&) a? - Bo] (A - Bo) a2fi2) 
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as = & 
[ 
h2p COE? 8* + (Ilo - 8A1p2 co9 8,) he$ sin 4, + 

+ (Ilo cos 2 & + ZiL41/3~ sin2 280) L41o~f3~] - 2 (d~l,,_, 

b = - k {$ h2a/3 sin 28,, - [Zl, + 2 (A - B,) fi2 + 4A1fi2 sin2 S,] hoa cos 8, -t 

+ 111, + 2 (A - B,) p21 2rl&~b sin 213~) 

It is known [ 4 1 that if the unperturbed motion is stable then Equa- 
tions (2.1) permit a sign-definite quadratic integral, which is the 
energy integral, obtainable also for the equations of the perturbed 
motion. It has the form 

V = 9 P12 + C&2 + 2A&.q2 + alx12 + us& + 2bxzx3 -j- ~3x33 +. . .= const (2.4) 

where 2U *= - (a1x12 + a2*22 + 2bx2x3 + a3x32 + . . . ) is the variable force 
function. Consequently, the sufficient condition of stability for the 
considered stationary motion will be the condition for sib-definiteness 
(positive-definiteness) of the integral (2.4): 

al > 0, a2 > 0, a2as - ba > 0 (2.5) 

We note that if the gyroscopes are removed, that is, if we set C, = 

A, = 0, then the resulting conditions coincide with those obtained by 
Rumiautsev I3 1. 

Equations (2.1) in normal coordinates have to be transformed accord- 
ingly. If, now, Cl, C2 and C3 are the Poincare coefficients of stability, 
then we have the well-known relations (see, for example, [ 5 1 ) 

clc2cs = pal (a2u3 - b2) c > 0) (2.6) 

Thus, if a1(a2a3 - b2) < 0, then the degree of instability is odd, and 

on the strength of Kelvin’s theorem [ 5 1 we conclude that the motion is 
unstable. If al(a2a3 - b2) > 0 with the other conditions in (2.5) 
violated, there exists a possibility of a gyroscopic stabilization of 
the unstable equilibriua of the conservative system {2.1), and the prob- 
lem remains open. When the axes are lying in the Ox -plane then the con- 
ditions of stability are similar to (2.5) with an appropriate change of 
symbols. 
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