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A rigid body, which we shall call the frame, can perform all possible
rotations about the fixed point O inside the frame (Fig. 1). The frame
contains two gyroscopes whose inner rings [ housings] could rotate about
parallel axes fixed in the frame, through the same rotation angle §.
Purther, the inner rings of the two gyroscopes act on each other through
some mechanism, such as a spring. The center of gravity of the whole
system does not coincide with the point O, This system thus resembles
the gyrosphere of a space compass.

Ishlinskii [ 1,2 1 investipated a similar system with s moving base,
and using the elementary gyroscope theory, has shown many of its inter-
esting properties. It serves a useful purpose to examine rigorously some
of these properties. In addition, Rumiantsev has successfully carried
out rigorous investigations of the dynamics of a rigid body with one
point fixed. In particular, he skillfully utilized the Routh-Liapunov
theorem on the stability of stationary motion when he investigated the
stability of permanent rotations of a heavy rigid body [31.
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This paper considers the problem of the existence of stationary
motions and their stability. The mass of the frame is taken into account.
The gyroscopes are not the "fast-spinning" ones as it is customary to
assume in elementary theory. In general, the spin velocities of the two
gyroscopes are different. The only external force is the force of gravity.
It is assumed that the system is conservative and that the frame of re-
ference is inertial.

1. Let 09 { be an inertial co- & 6%0:90.29)
ordinate system (Fig. 2), the coordi-
nate system Oxyz be fixed in the
frame, its axes being the principal
axes of inertia of the frame through
the point 0 (Figs. 1, 2), the x-axis
parallel to the rotation axes of the
inner rings, the z;- and z,-axes be
the spin axes of the gyroscopes Fig. 2.
located in the Oyz plane. Then the
position of the whole system with respect to the axes 0&n { can be de-
termined through the angles ¢, ¥, 0, a, and a,. Here a; and a, are the
rotation angles of the gyroscopes with respect to thelr inner rings.

The mass of each gyroscope is =, its equatorial (for the axes through
0, and 0,) and axial moments of inertia are 4; and C;, respectively; the
moments of inertia of the frame about the axes x, y and :z are Az, B, and
Cy, respectively.

Let also p, ¢ and r be the x, y and z components of the angular velo-
city:

p=1Psinfsing +Becosp, ¢=7psinhcosp— fsing, r=1{cosh + ¢

The zy and z, components of the absolute angular velocity of each
gyroscope are

= a3 — ¢sind 4 rcos 3, rg = &, } ¢sind 4 rcos d
The kinetic energy of the system is

2T = Ap?® + Bg® + Cr® -+ 24;82 1 C1 (n® + ra?) (1.1)

where

A=Ay 4 2ml® 4+ 24;, B =B;+ 2ml® 4+ 241 c082 8, C = Cy 4 24, sin? 3

The expression for the force function has the form

U = —P (agys + yova -+ 20vs) + 2\ M (8) @b (1.2)
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Here P is the weight of the system, M(5) is the moment of the spring
system, T4, Yo and z, are the coordinates of the center of gravity with
respect to Oxyz. The direction cosines y,, y, and y;, of the upward-
directed vertical axis £, with respect to the z-, y- and z-axes are

v1 = sinfsing, y2 = sinfcosg, ys = cosf

From (1.1) and (1.2) it follows that the coordinates i, a, and a,,
are cyclic. The first integrals of the equations of motion with respect
to these coordinates are

Ciri = Hy = const, Ciry = Hy, = const (H=H, + H,, h=H,— Hy) (1.3)
Apyr -+ Bgys + Crys 4 hye sin 8 4+ Hys cos 6 = n = const

We shall eliminate the cyclic coordinates i/, a; and a,. After certain
transformations the Routh function assumes the form
1 T2\ » I, . c . .2
R = —2[(13 — 71—)62 — 2TI‘CY39QD -+ <C iy 72) 9% - 24:% ]+ [H cos &
c I
+ W(n — hypsind — Hys cosé)ys} ¢+ [—hsincp sin & +Ti- (n — hygsin § —
, 1
— Hys cos 6)] 6 — TR (n — hyasin 8 — Hys cos §)? (1.4)

Here

Iy = Avy:® - Bys* 4- Cvs?, I, = Avy1 cos ¢ — By, sing, Is = Acos?p  Bsin?
For the coordinates q; = 0, g5 = ¢, g3 = 8, we have the equations

d(_&ﬂ) 0R _ U 1.5)

dr aé,—”a;=w
We shall consider the stationary motion of the system
B=0p, ©o=q, 8=208, =0, G=0, P=0 (1.6)

which corresponds to the uniform rotation of the frame about a vertical
axis. The constants (1.6) should satisfy the condition d/dq (R - U) = 0.
Replacing the symbols y;, y, and y3, by a, B and y, respectively, and
taking into account on the strength of (1.3) that

1 .
0 =7 (n — AP sin 8 — Hy cos &)

we obtain the following conditions:
(H sin Oy cos 8, — hy cos @g sin 8,) ® — (Aa sin @y 4 Bof cos g — Cp sin O,) yo? =
= — P (2gy sin @y + yoy €0S Py — zo sin By)
hoa sin 8; — (4 — Bg) 0%af = —P (2, — yoa) (1.7
(Hy sin 8, — AP cos dg)o — A1 (y2 — P?) @? sin 28, = 2M (&)



Stability of stationary motion of gyroscopic frame 1147

Here Ilo' By, C, denote the values of these quantities for the motion
under consideration. The last equation in (1.7) determines the moment of
the spring system, When 00, ¢y Oy and @ are assigned, then the quanti-
ties H and h can be determined from the first two equations., Rotations
about the principal axes of inertia of the frame are investigated in[6].

Consequently, by utilizing gyroscopes we can make the frame rotate
about an arbitrary vertical axis by selecting appropriate spin velocities
for the gyroscopes. (If a = 0, then at 8 # 0 it follows that xy = 0),

We shall separate now the rotations of the frame about axes lying in
the principal planes of the frame, by setting y; = z; = 0. When the axes
are in the Oxy plane (y = 0) the conditions (1.7) give H= 0, which is
equivalent to @) = — Wy,

hoa sin 6 — (4 — By) 0%af = — Pz,
— hwP cos Oy + A1fPw? sin 28y = 2M (&), h = 2C1 (w2 + ©f sin &) (1.8)

When the axes are in the Oxz plane (8 = 0), the conditions are
analogous to (1.8) where the quantities h, 80. Bo and B are replaced by
H 1/2n+ 80. C, and y, respectively.

Rotations about the axes which are in the Oy:z plane (a = 0) are im-
possible when xg = 0,

2. We shall investigate the stability of rotation about the axes which
are lying in the Oxy plane, that is, we shall set in the perturbed motion
0:1/2n+zl,¢=¢o+z2, 8:80+x3.

The variational equations of the system (1.5) will have the following
form:
ABO . . . _ Coi‘lfg + mJ1 + as s + bxs =0 5
To, = miy 4 kds a1 =09 4050 pi 1 bry 4 agws = 0 (2.1)

We have the following expressions for the coefficients of the gyro-
scopic forces:

1
m = 71:' [Bohﬁ sin 60+ (A —_ Bo) (1‘1(12 — Bosz) o — IloCO(D]
A
k= -7%(2A1m[3 sin 28 — & cos &) (2.2)

In the coefficients of the potential forces we can eliminate Pxo by
the use of (1.8) and then put them in the form

1 1 .
ay = B ho sin 8y 4 (Bg — Cp) @®, a2 = T {hZ(zzsin2 8y + (2.3)

+ (B 44— moar|hep sindo 43 (4 — By a2 — By (4 — B 0P|
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1
a= 7 [h*ﬁz c0s? 8¢ + (F19 — 8A41P? cos? &) hwf sin § +

+ (figcos 2 Oy - 24102 sin? 28;) 2A1m2ﬁ2] —2 (dﬂgé(é)‘)sds

1
b= — E{% h2af sin 28g — [T19 4 2 (4 — B,) P2 + 441P2 sin? §y] koo cos 8y -

A+ [T1p -+ 2 (4 — B,) §2] 2410%P sin 26{;}

It is known [ 4] that if the unperturbed motion is stable then Equa-
tions (2.1) permit a sign-definite quadratic integral, which is the
energy integral, obtainable also for the equations of the perturbed
motion., It has the form

AB,
110

#12 - Cota® + 2A128% -+ aama® -+ apia® 4 2bagxs - asrs® 4-. . .= const (2.4)

where 2U*= — (alzl2 + azxzz + 2bxgxy + a3232 4+ ... ) 1is the variable force
function. Consequently, the sufficient condition of stability for the
considered stationary motion will be the condition for sign-definiteness
(positive-definiteness) of the integral (2.4):

ar >0, as >0, asas — b2 >0 (2.5)

We note that if the gyroscopes are removed, that is, if we set Cy =
Al = 0, then the resulting conditions coincide with those obtained by
Rumiantsev [ 31].

Equations (2.1) in normal coordinates have to be transformed accord-
ingly. If, now, Cl, C2 and C3 are the Polncare coefficients of stability,
then we have the well-known relations (see, for example, [5 1)

cicacs = pai {asas — b%) >0 {2.8)

Thus, if al(02¢3 - bz) < 0, then the degree of instability is odd, and
on the strength of Kelvin’s theorem [5] we conclude that the motion is
unstable. If a,(aya, — b%) > 0 with the other conditions in (2.5)
violated, there exists a possibility of a grroscopic stabilization of
the unstable equilibrium of the conservative system (2.1), and the prob-
lem remains open. When the axes are lying in the Ox -plane then the con-
ditions of stability are similar to (2.5) with an appropriate change of
symbols,
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